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>» Why XAl is important ?

O Key applications

« Finance, autonomous driving, medical diagnosis, military

O Set standards for the Al safety and interpretability

The growth of papers in XAl

Interpretability Is a necessary
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[1] Gonzalo Recio Domenech “Analysis of Explainability of Deep Learning Models for Medical Applicability” Minds Brains and

Machines (MBM) — Master in Artificial Intelligence.




>» Topics of explaining DNNs

Semantic explanation

How to
quantify and
Improve the

trustworthiness
of a DNN

End-to-end Communicati How to
learn ve learning at evaluate
interpretable the semantic the
features level explanation

Which semantic
concepts are
modeled and used
for prediction

Explain classical
deep-learning
techniques (e.qg.,
distillation,
adversarial learning,
compression)

How to bridge
Model and explain the architecture
the representation with the
capacity of a DNN knowledge

representation

How to debug
DNNSs using
mathematical
diagnosis of DNN

features
A

Mathematical explanation




&> XAl topics

Semantic explanation

Which semantic uaanali\‘lytz nd End-to-end Communicati How to
concepts are ? morove the learn ve learning at evaluate
modeled and used tru stI\C/)v orthiness interpretable the semantic the
for prediction of 2 DNN features level explanation
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Lapuschkin et al. “unmasking clever hans predictors and assessing what machines really learn” in Nat Commun LU 1096, 2019
Fong et al. "Net2Vec: Quantifying and Explaining how Concepts are encoded by filters in deep neural networks” in CVPR 2018
Zhang et al. "Examining CNN Representations with respect to Dataset Bias” in AAAI 2018



&> XAl topics

Mathematical explanation

Explain classical
deep-learning
techniques (e.qg.,

How to bridge
Model and explain the architecture
the representation with the
capacity of a DNN knowledge

representation

How to debug
DNNSs using

mathematical
diagnosis of DNN
features

distillation,
adversarial learning,
compression)

» How does an accident happen?
« What is the accident frequency If the car has
run safely for a year?
e Once per year?
* Once per ten years?
* How to further boost the safety even without

accident records?




&> XAl topics

Mathematical explanation

Explain classical
deep-learning
techniques (e.qg.,
distillation,
adversarial learning,
compression)

How to debug
DNNSs using
mathematical

How to bridge
Model and explain the architecture

the representation with the
capacity of a DNN knowledge
representation

diagnosis of DNN
features

* How to evaluate the generalization power of a DNN?

* Why does a specific DNN architecture outperform another architecture in a
specific task?

« What is the relationship between the architecture and the knowledge.

« What is the common essence of existing DL methods? How to further improve

these methods?
4




& Problems with semantic explanations

S . )

Only self-consistency, no
| mutuality between XAl methods

/Many semantic explanations o Very few theoretic foundations
are still heuristic technologies, | 7| ¢ \
rather than science Difficult to improve DNNs
-

Lack of convincing enough
L evaluation metrics )

Explanation results conflict with each other.

Gradient Guided Back- LIME
x Input propagatlon

Input

Perturbation DeepSHAP
r =




& Problems with explaining the representation power

( N

Limited to certain assumptions
(shallow nets or infinite width)

( ) 5
( : : 2,
Analysis of the representation | _| Cannot provide semantic
capacity of a DNN . explanations |
\_ - e ~

Cannot explain the emergence
_| of semantics in deep layers.

“Mathematic proof” is not equivalent to “understanding.”

Theorem 3 (Pitas et al. (2017)) Let B an upper bound on the {2 norm of any point in the input
domain. For any B,~,d > 0, the following bound holds with probability 1 — 6 over the training set:

2 E
d d d W, —W"V m
. (843 >im1 kiv/ei + vy 1n(4n2d)) [T ||Wz||§ Zj:l % +1In(%)
L< L’Y + 5 Jjll2
Y4m
(24)
Pitas, K., Davies, M., and Vandergheynst, P. (2017). Pac-bayesian margin bounds for convolutional neural networks. arXiv N %B

preprint arXiv:1801.00171



;) Vision for XAl science

Although still far from science
i

XAl metrics for

i : -pr
Regional explanation Well-proved

o ; representation theoretic
e power of DNNSs foundation
» Strict meanings of » Mutuality between different metrics

visual concepts  Feature transferability
« Accurate attributions » Adversarial robustness/transferability

« Transformation complexity

« Generalization
» Disentanglement
» Feature information
 Interactions
« Essence of existing deep-learning methods
« Summarize effective factors
» Improve existing methods
« Guide deep learning
» (Guide the design of network architecture -
» (Guide the learning process

g




;) Game-theoretic interactions

Mathematical
= A Game theory: Shapley Value
Metric Game-theoretic interactions
Definitions and [ Define multivariate Define multi-order |y  Derive desirable Problem with baseline
axioms intew . /interactioin7‘ \axioms \“\/&MWU%

: Explain the Construct Explain the Explain the Explain the Exp-)lain the
Theo'.-le.s of network’s interaction DNN’s semantic adversarial aesthetic adversarial
explaining DNNS | generalization ability trees representation transferability appreciation robustness

.5
Iﬁ Adversarial |
perturbations mainly
affect high-order |
| interactions. |
I
I
I

aee oo r L s
r ](1 The negative correlation\( .
1. The relationship I l between the adversarial | Aesthetic images
I | - |  make aneural |
_betweelj dropout and || Extract How the | transferability and the | network strengthen |
interactions | hierarchical || interactions interaction

; ; o . salient concepts and
|2. The relationship | structures of ” reveal the ||2 A unified explanation ofll discard iness§ntial |

aataa 0

Adversarial training

between the | interactions semantics transferability-boosting can boost the
, . | | concepts. .
network’s |, among words || encoded in the |  methods 2. Operations to improve || adversarial
I generalization ability ' | in a sentence Il DNN |;3. Enhance the adversarial || ' ) | robustness by
. . | " the aesthetic level of .
| and interactions | | transferability by images automaticall modeling more low-
“ o MU penalising interactions | __"9% O ) orger interactions.

Zhang et al. “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021



&* Preliminaries: Shapley values

O Game
e Input variables = players
» Scalar network output/loss - total rewards of players in the game

six input variables g L e L output

: A network
six players
A game reward
L] ! T
Orig. DeeplLift - l
-# l
HEEE
New DeeplLift »r £
— S v(S)
. "-‘. E
SHAP g 41 T
i Lloyd S Shapley. “A value for n-person games”. In: Contributions to the Theory of Games
_ 2.28 (1953), pp. 307-317.
LIME - -"\ “| Scott M. Lundberg, and Su-In Lee, “A unified approach to interpreting model predictions”
# - in NeurlPS 2017




&* Preliminaries: Shapley values

O Given a game, how to fairly allocate contribution of each player?

The Shapley value is considered as a method that fairly allocates the reward
to players.

(n—|S]| = D!IS]!
n!

¢(iIN) =

SCN\{i}

[v(S U {i}) — v(9)]

»(N) = v(0) + Z b (N

leN

Lloyd S Shapley. “A value for n-person games”. In: Contributions to the Theory of Games 2.28 (1953), pp. 307-317.
Scott M. Lundberg, and Su-In Lee, “A unified approach to interpreting model predictions” in NeurlPS 2017




&* Preliminaries: Shapley values

O Question: Given a game, how to fairly allocate contribution of each player?

Several desirable axioms ensure the fairness of allocation:
e Linearity axiom
If vS € N,u(S) = v(S) + w(S), then ¢, (i|N) = ¢,(iI[N) + ¢, (i|N)
« Dummy axiom
If vS € N\{i},v(S U {i}) = v(S) + v({i}), then ¢ (i|N) = v({i}) — v(0)
e Symmetry axiom
If vS € N\{i},v(S U {i}) = v(S U {j}), then ¢(i|N) = ¢p(j|N)
« Efficiency axiom

Lien PEIN) = v(N) — v(9)

J

~

Orig. Deeplift

New DeeplLift

SHAP

LIME

091199199

Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.



&* Preliminaries: Shapley values

O Question: Given a game, how to fairly allocate contribution of each player?

Several desirable axioms ensure the fairness of allocation:
e Linearity axiom

If vS € N,u(S) = v(S) + w(S), then ¢,,(i|N) = ¢,(i[N) + ¢, (i|N)

If two independent games v and w can be merged into one game, then the
Shapley value of the player i in game v and game w also can be merged.

%

Orig. Deeplift

New DeeplLift

p—
. -
- -~
"
- Y
- F o
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& >

SHAP

LIME g 1
)

Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.




&* Preliminaries: Shapley values

O Question: Given a game, how to fairly allocate contribution of each player?
Several desirable axioms ensure the fairness of allocation:

« Dummy axiom
IfvS € N\{i}, v(S U {i}) = v(S) + v({i}), then ¢ (i|N) = v({i}) — v(D)
A dummy player i satisfies that the player i has no interaction with other
players.

AT "
Orig. DeeplLift g b %,
| 1 “J
- ; P J_,---.
New DeeplLift g o 3 t
. -
. £ ..
SHAP é/ h g
LIME g .
F

Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.




&* Preliminaries: Shapley values

O Question: Given a game, how to fairly allocate contribution of each player?
Several desirable axioms ensure the fairness of allocation:

e Symmetry axiom
If vS € N\{i}, v(S U {i}) = v(S U {j}), then ¢(i|N) = ¢p(j|N)
If two players i, j have same collaborations with other players, then they
have the same Shapley value.

e i
Orig. DeeplLift g b : %
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- - P J_,--- J
New Deeplift g o 4 t
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Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.



&* Preliminaries: Shapley values

O Question: Given a game, how to fairly allocate contribution of each player?
Several desirable axioms ensure the fairness of allocation:

« Efficiency axiom

Lien PEIN) = v(N) — v(9)

The overall reward can be allocated to all players owoewr | 57 || | s
In the game. | || 5| Z 1] %
swe | 557 || 2
e | S|

Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.



&* Preliminaries: Shapley values

[0 Remaining issues
» How to determine reasonable baseline values?
* How to determine the reasonable partition of players?

Lloyd S Shapley. “A value for n-person games”. Contributions to the Theory of Games 2.28 (1953), pp. 307-317.



How to define interactions
In game theory?

How to determine baseline values for the Shapley value?

What is the relationship between interactions and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?
What is the relationship between interactions and the generalization?

What is the relationship between interactions and adversarial transferability?
What is the relationship between interactions and adversarial robustness?




;?' Game-theoretic interactions

it'sa remarkably solid and subtly satirical tour | de force .
this1s a | good seript, good dialogue| , funny even for adults
dull, lifeless, and amateurishly | assembled .

a warm but realistic meditation | on friendship , family and affection .

no telegraphing is too | obvious or simplistic | for this movie .

[ 4 [ 4
BIAD = |*m o - e - - B
a Alice Carol
T [A] Carol SO S
i g
a coalition the importance of  the individual importance of
the coalition [A] each player in the coalition

B([A]) > 0 : Players in [A] mainly have cooperative relationship.
B([A]) < 0: Players in [A] mainly have adversarial relationship.

Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021



;?' Game-theoretic interactions

it'sa remarkably solid and subtly satirical tour | de force .

this1s a | good seript, good dialogue| , funny even for adults

dull, lifeless, and amateurishly | assembled .

a warm but realistic meditation | on friendship , family and affection .

no telegraphing is too | obvious or simplistic | for this movie .

 Input words of a sentence (or the pixels of an image) usually

cooperate with each other, rather than work individually to make
Inferences.

» The cooperative input words (or pixels) have strong interactions.

« Shapley interactions between two players (i,j): the change of the
Importance of i when j is present, w.r.t. the importance when j is absent.

I(i,j) = ¢W/j(i|N) - ¢W/Oj(i|N)

Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021




& Multivariate Shapley interactions: properties

Properties of multivariate Shapley interactions B([A]):

e Linearity property :

If VS S N, u(S) = v(S) + w(S), then VA € N, B,([4]) = B,([A]) +
By (A]).

« Dummy property : the dummy player has no interaction with other
players. If vS € N\{i}, v(SU {i}) =v(S) + v({i}), then VA &
N\{i}, B([A U {i}]) = B([A]).

« Symmetry property . symmetric players have same interaction with other

players.
IfvS € N\{i,j},v(SU{i})) =v(SU{j}),thenVA & N, B([AU{i}]) =

B(lA U {3iD)

Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021



& Multivariate Shapley interactions

* Bnax([A]) reflects positive interaction inside [A].

* Bnin(|A]) reflects negative interaction inside [A].

* T([AD = Bmax(l4D) — Bmin (14D

* T([A]) can measure both positive and negative interactions.

« \We design an effective method to estimate the optimal partition

and approximate T ([A]).

Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021



> Explain the rationale of incorrect prediction

 Multivariate interactions can be used to extract tree structures that
encoded interactions among words inside different DNNSs.

a deep and meaningful film
B([S]) = 5.87; Bpetween = 1.06;t = 0.24;7 = 0.21; 5 = 0.00
[ B([S]) = 4.35; Bpetween = 2.66 B([S]) = 0.35; Bperween = 0.35 |
| t=0.08;r =0.33;s = 0.31 t =0.97;r =0.33;s =055 |
[fB([SD = 1.75; Bpetween = 1.28 film
t = 0.40;7 = 0.30;s = 0.05

t=0.77;,r = 0.25;5s = 0.26

Zhang et al, “Building Interpretable Interaction Trees for Deep NLP Models” in AAAI 2021

[ B([S]) = 0.41; Bpetween = 0.41 ] [ meaningful ]




> Explain the rationale of incorrect prediction

« Multivariate interactions show extract prototype features to help
us understand the incorrect predictions of DNNSs

maximum (prototypes towards incorrect predictions):
if steven soderbergh s “ solaris * is a failure | it is a glorious failure .  predict: negative
minimum (prototypes towards correct predictions):
if steven soderbergh * s “ solaris ” is a failure | itis a glorious failure|. label: positive
maximum (prototypes towards incorrect predictions):
the longer the movie goes , | the worse it gets, but it ° s actually pretty good | in the first few minutes.  predict: positive
minimum (prototypes towards correct predictions):
the longer the movie goes , | the worse it gets, but it ’ s actually pretty good |in the first few minutes. ~ label: negative
maximum (prototypes towards incorrect predictions):
on the heels of the ring comes |a similarly morose and humorless horror movie | that , although flawed , predict: negative
IS to be commended for its straight - ahead approach to creepiness .
minimum (prototypes towards correct predictions):
on the heels of the ring comes |a similarly morose and humorless horror movie | that , although flawed , label: positive
IS to be commended for its straight - ahead approach to creepiness.

Zhang et al, “Interpreting Multivariate Shapley Interactions in DNNs” in AAAI 2021



Multi-order interactions to represent the complexity
& of representations

 \We further define interactions of different orders as follows.

1 n—2 .
I, )) & Bsemipisi=mBV(S, 0] IGN==——=)  1™(})

1M (4, j) measures the average interaction between pixels (i, j) under all
contexts consisting of m pixels.

m=03n m=04n m=05n m=0.6n LOW order m: simple contextual
TN P 2 24 collaborations with a few pixels -
3 represents simple concepts;

High order m: complex contextual
collaborations with massive pixels -2

A
[

|
(w
-
I

Ren et al. Game-theoretic Understanding of Adversarially Learned Features. in arXiv:2103.07364.



& Multi-order interactions: properties

Properties of multi-order interactions

« Marginal contribution property : vijeN,i#j, ¢ DGIN) — ¢M™GIN) = E [19(, )]

JEN\{{}

« Accumulation property : ¢™@iN)= E [Z’"—l,(k)(i,j) + OGN
JEN\{i} k=0 ]

» Efficiency property : van-v@ =) ¢@um+> » |»

iEN iEN jEN\{i} -

Ben-—1 -k

1® (i, j
k=0 n(n—1) @)

» Linearity property : ifvsc n,u(s) = v(S) + w(s), then I, /) = I, )+ 1, j)
* Independency property : 1fvs c N\{i}, v(S U {i}) = v(S) + v({i}), then Vj € N, 1™ (i,j) = 0
e  Symmetry property : 1fvsc Nv(Su{i}) =v(Su{j}), then vk € N\{i,j}, [™ (i, k) = 1™ (j, k)

S n-—2
« Summability property : ¢("_1)(i|N)—¢(°)(i|N)=j61\];E\{i}[zm=OI(m)(i,j)}=I(N\{i},i)= z 1, )

JEN\{i}

Ren et al. Game-theoretic Understanding of Adversarially Learned Features. in arXiv:2103.07364.



>

How to define interactions in game theory?
How to determine baseline
values for the Shapley value?

What is the relationship between interactions and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?
What is the relationship between interactions and the generalization?

What is the relationship between interactions and adversarial transferability?
What is the relationship between interactions and adversarial robustness?




& Problem with baseline values
The marginal effects of the additional variable (red square)

b=, wsvEU@) — )]

Baseline values: the value
representing the absence of
the variables (providing no

3 3 signal to the model inference).
L Zero baseline value Mean baseline value Blurring the image R l I
Previous e Zero ! (lécmovetc’_al f
settingsof | Mean In o_rrSIa |or;o
ek ¢+ Slunig bl
| W
values » Depending on nelghborlng contexts SII: : J

edges/dots.
vis) = p(x§|x5)[ (xS - x§)]

[1] Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya Feige. Shapley explainability on the
data manifold. In International Conference on Learning Representations, 2021.



> Objective of learning baseline values

Input: A trained model and input samples

Output: Baseline values that satisfy the following two requirements:
(1) retain the four axioms of Shapley values

(2) push the baseline value towards representing no-signal state
as much as possible.

Whether baseline

Input Pre-trained Yes  valid baseline
— — values represent the m—r
samples DNN . values
1 no-signal state?
No
Baseline value < :
Revise

>



;) Multi-variate interaction

 The multi-variate interaction should ensure that

;(N) - vi@) + ;I(Q

Network output the marginal benefit

the benefit from all a constant from the Interaction
variables blas of all variablesin S
* Solution:

1(S) = z(—1)|5|‘|L|v(L)

LCS



>’ A new multi-variate interaction

» Transforming a DNN into an AND-OR representation.

 Decompose the overall utility of a DNN into utilities of different
multi-variate interactions

Network output Constant bias Elementary Elementary Elementary
interaction interaction interaction
component component component

For I(S,) = ZLgsl(—l)lsll_lle(L)

: ﬁ > Output v(S;)
4

A network



Using Interaction patterns to represent the no-

« Salient patterns I(S) with significant influences, [I(S)| is large
* Noisy patterns I(S): with little influences, [1(S)| is small

v(N) = v(@) = ) I(5)

SEN

Learning baseline values that activate the least salient
patterns = most likely to represent the no-signal state.

I«ﬂ



Learning baseline values = to minimize the
;) number of salient patterns

Conclusion 1 Conclusion 2

. The optimal baseline values\ . How to represent signal state? .

l aim to l v(N) - (@) = ) 1(5)

SEN

L represent no-signal state | kUsmg the number of salient patternsj

L J
o

Therefore, we can learn the baseline values that
minimize the number of salient patterns




J» Activation rate of different interaction patterns

Let 6; = 1 denote the presence of the variable i, and let §; =0 represent
the absence of i. Let us consider a set of m variables. Let P(6; = 1) = %

We can rewrite I(S) as

I1(S) =610, 6y - Ws m = |S|
Then P{(S)#0)=P(6;=1)P6,=1):-P(6,,=1) =0.5™
We define m = |S| as the order of the interaction I(S).

» For high-order interactions, where m = |S| is large:

N

1 1 1
PU(S) £ 0) =Z*—x - =—

* For low-order interactions, where m = |S| is small:

- P(I(S) # 0) =~ = »

N | =
|

23




Relationship between low-order interactions and
high-order interactions

. Z . z 1(S)

SEQow . S€Qpigh

Y N -

Low-order interactions High-order interactions

Qiow = {S1IS| < threshold}, Qpign = {S||S| > threshold}

»



L_earning baseline values = to reduce low-order

High-order interactions
vih) o ui0) z I(5) + Z | - Low activation rate
SEQiow S€Qhigh —> Sparse activations

\ /

Reduce signals represented by low-order interactions

Strengthen signal represented by high-order interactions

Make most signals sparsely activated




;) How to reduce low-order interactions

We prove that low-order Shapley values only contain low-order
Interactions.

The m-order Shapley value ¢ ™) (i) = Escmiyis)=m[v(S U {i}) — v(S)]

The approximate-yet-efficient solution: penalizing low-order
Shapley values

Lshapiey = z z z 1™ ()]

m~Unif(0;A) xeX ieN



;?' Verification

Objective: we aim to verify whether or not we can successfully
reduce the ratio of low-order Shapley values and boost the
Influence of high-order Shapley values

1™
ratio e (nl])
Em Zi I‘i’; I
03 1 m Learned baseline values by Lmarginal
B Learned baseline values by Lgyapiey :
Zero baseline values High-order
Shapley values are
Low-order =
strengthened.
Shapley values are «—
reduced 5 i i 0% Tk i O o

order m of Shapley values




Connections between multi-variate interaction
;) and other metrics

« Connecting the interaction I(S) to the Shapley value:

The Shapley value ¢(i) = Zs:iesl—; EHS)

« Connecting the interaction I(S) to the Shapley interaction index:

lnap($) = ) p(T) Y CDPHp@uTy = »' pMI(Slenv(T))

TCSN\S LES TCSN\S

where I(S|env(T)) denotes the specific interaction I(S) when
variables in T are always presents.




Experiments: learned baseline values and Shapley

;) values

The baseline values learned by our method generated less noisy
Shapley values than other methods

. On MNIST dataset Zero-init Mean-init

» Learned baseline value: Focus on
foreground

(shared by all MNIST images)
Zero Mean /Ours Ours \

Input Baseline Baseline Blurring SHAP SAGE | Lshapley Lshapley
image value value image magnitude X2 zero-init  mean-init

Shapley values E

based on different

baseline values
L_ess noise




Experiments: learned baseline values and Shapley
P values

The learned baseline values generate Shapley values, which are
consistent with SHAP and SAGE.

e On the UCI Census Income dataset Shapley values

> Learned baseline value: on other baseline  Shapley value:

Native-country Values of ( Zero Mean \ ( Ours \
the input sample  baseline baseline SHAP SAGE LShapley
Hours-per-week Native-country (£33 values values Zero-init

. Hours-per-weel k F5rs
Capital-loss

Capital-gain

Relationship

USing LShapley

Capital-loss
Capital-gain p—
Sex -
Racef
Relationship
Sex Occupation g —
i Marital-status —
- - USIng LShapley Education g
Race A Workclass g
(zero-init) Age !
40 60 0 0

0
Shapley value

Occupation (mean-init) e county
. - -pE i
Marital-status L Usmg.L{nargmal Sapiiakioss L S g -
Education (zero-init) =) - [ ; [

Workclass == Using Lmarginal Sccupaiony = - - —
Age (mean-init) Ma;%ﬁ{,?l‘é,‘ﬁ"m - - = | —

'or ESSE
0 20 40 60 80 100 1200 Age%\o 2 /—0; e

Shapley value

Baseline values
learned by our methods

Consistent
with SHARE
and SAG i

Contradict
with other
methods




Experiments: verification of the learned baseline
P values

Verify the correctness of the learned baseline values

« On images, there are no ground-truth baseline values for verification.
» \We generated functions, whose ground truth of baseline values could be
easily determined.

Functions (Vi € N, xz; € {0,1})
—0185T1(T2 + .“173)2'432 — L lrLgly
—sigmoid(—4zr; — 4x9 — 4x3 + 2.00) — 0.011z4(x5 + 76 + 7 + T8 + Tg)2-34
—x1T9w3 + sigmoid(—5ryrsrery + 2.50) — 1879
—sigmoid(+4x; — 4z + 4xg — 6.00) — T4T5T6T7 — T3T9T 10

The ground truth of baseline values
bf =0fori e {1,2,3,4,5,6,7}

b*—lfor’ze{l 23} by —01‘0r3€{-1.5.6.7
b*—lfor’.fe{él } b*—OfOHE{lQS

,,,,,,,,




Experiments: verification of the learned baseline

Verify the correctness of the learned baseline values (b; € {0,1})

e Metric: accuracy of the learned baseline values

[1(b; = 1&b; > 0.5) + 1(b; = 0& b; < 0.5)]

S|
Ingb

=1
Table 3: Accuracy of learned baseline values.
LShapley Lmarginal
initialize with O 1nitialize with 0.5 1nitialize with 1 | initialize with O  initialize with 0.5 1nitialize with 1
Synthetic functions 98.06% 98.70% 98.70% 98.06% 98.14% 98.14%
Functions in [47] 88.52% 91.80% 90.16% 86.89% 91.80% 90.16%

In most cases, the accuracy was above 90%, showing that our
method could effectively learn correct baseline values.




Can we unify all attribution
methods using game-theoretic
Interactions?

Huigi Deng
Sun Yat-sen University



How to define interactions in game theory?
How to determine baseline values for the Shapley value?

What Is the relationship
between interactions
and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?
What is the relationship between interactions and the generalization?

What is the relationship between interactions and adversarial transferability?
What is the relationship between interactions and adversarial robustness?
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> Explaining textures, shapes, and beyond

« Multi-order interaction: measures the average interaction between
pixels (i,j) under all contexts consisting of m pixels.

m=0.3n m=0.4n m=0.5n m=0.6n

- ' - - -
- 4 ¥ - - -

v, U S %

M-order interaction 1™ (i, ) & Escm i 3, (s1=m[AV(S, i, )]

» Low-order interactions mainly reflect simple and common concepts.
» Middle-order interactions mainly represent middle complex concepts.
» High-order interactions mainly represent the memory of specific large-

scale concepts.
‘1
Cheng et al, "A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.



& Multi-order interactions: properties

Properties of multi-order interactions

« Marginal contribution property : vijeN,i#j, ¢ DGIN) — ¢M™GIN) = E [19(, )]

JEN\{{}

« Accumulation property : ¢™@iN)= E [Z’"—l,(k)(i,j) + OGN
JEN\{i} k=0 ]

» Efficiency property : van-v@ =) ¢@um+> » |»

iEN iEN jEN\{i} -

Ben-—1 -k

1® (i, j
k=0 n(n—1) @)

» Linearity property : ifvsc n,u(s) = v(S) + w(s), then I, /) = I, )+ 1, j)
* Independency property : 1fvs c N\{i}, v(S U {i}) = v(S) + v({i}), then Vj € N, 1™ (i,j) = 0
e  Symmetry property : 1fvsc Nv(Su{i}) =v(Su{j}), then vk € N\{i,j}, [™ (i, k) = 1™ (j, k)

S n-—2
« Summability property : ¢("_1)(i|N)—¢(°)(i|N)=j61\];E\{i}[zm=OI(m)(i,j)}=I(N\{i},i)= z 1, )

JEN\{i}

Ren et al. Game-theoretic Understanding of Adversarially Learned Features. in arXiv:2103.07364.



>» What is the relationship between interactions and
visual concepts?

« Understanding the encoding of textures
 Understanding the difference between textures & shapes
 Understanding large-scale visual concepts
 Understanding outliers




> Understanding the encoding of textures

» How does a DNN encodes textures?
» Low-order interactions usually represent common and widely-
shared local textures.
» Middle-order interactions usually represent more complex textures.

» Hypothesis:

Compared to classify a few textures using low-order (simple)
Interactions, the classification of massive fine-grained textures usually
forced a DNN to encode fewer middle-order interactions, which subtly
distinguish fine-grained textures.

Easy classification among 11 categories D

iy, o N S
. i ’ ‘\ / . .
{ N B
\ ;
) 5N

ores

It classification among 231 cate,




> Understanding the encoding of textures

 In order to verify hypothesis that fine-grained texture classification made
the DNN encode fewer but more complex middle-order interactions.

« The metric F™ - the relative strength of the m-th order

strength

F(Tn) e Is(tﬁzgth/Em’ [Is.(t?;n;th]! I(m) = EmEﬂ [E’i?j [II(m) (3: J ‘I) ”}

e \frification:

(m) (m) (m)

Uy ResNet34 | Pl ResNet-S0 | P ResNet-101 | —*— 11 categories
66 c ies
2 2 2 )
—+— (231 categories
I TN s 1 S S
070In 051 0.8n 070in~ 051 08n 070In 051 0s8n

order m order m order m

Conclusion: The stricter encoding of fine-grained textures

usually leads to fewer middle-order interactions. | '
3

Cheng et al, "A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.



>» What is the relationship between interactions and
visual concepts?

 Understanding the encoding of textures

» Understanding difference between textures & shapes
 Understanding large-scale visual concepts
 Understanding outliers



_» Difference between textures & shapes

« Encoding textures is more flexible than encoding shapes.

> A large-scale texture — Can be modeled either as
the ensemble of massive
local textures.

Or as the ensemble of a few
— middle-complex textures.

» A large-scale shape is usually encoded as the ensemble of middle-

complex shapes.
pIEX Shap / =2 =
I/ V¥

Cheng et al, “A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.




» Difference between textures & shapes

« Hypothesis:

If DNNSs learned under different noisy conditions have similar
distributions of the interaction orders, we consider the encoding of
concepts Is not flexible; otherwise, it is flexible.

« Metric to verify hypothesis:

AF(M = |p(mnoise) _ p(m)| megsuyres the difference of multi-order
Interaction strength between the DNN learned with noise and the
DNN learned without noise.

) Alarge AF™ indicates the encoding of concepts is flexible.

=
Yi
Cheng et al, "A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021. A



_» Difference between textures & shapes

 Vrification:
Compared with encoding shapes, encoding textures usually had
large AF™ values.

mm) Conclusion: Compared with encoding shapes,
a DNN encodes textures with more flexibility.

BN Encoding textures Encoding shapes
AF"[|ResNet-18 ]  AF"[|ResNet-34 |  AF™[jResNet-50
Noise , , 1 ] 0.2

leve] © =0.1

0°0.1n 0.3n 0.5norder Y0.1n 0.3n 0.5norder®%0.1n 0.3n 0.5norder

U=
Cheng et al, "A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021. A



>» What is the relationship between interactions and
visual concepts?

 Understanding the encoding of textures

 Understanding the difference between textures & shapes
e Understanding large-scale visual concepts
 Understanding outliers



> Understanding large-scale visual concepts

« Concepts encoded as high-order interactions usually satisfy two

requirements:
1. Frequently appear in images, such as sky or ocean;
2. The interaction between the background and the foreground is
used for inference, such as the interaction between the ocean and

the red-breasted merganser.

(b)

Either only the foreground or only the background
IS not discriminative enough for inference.

Cheng et al, “A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.



2* Understanding large-scale visual concepts

« Hypothesis:
If a DNN memorizes large-scale concepts for inference, then this

DNN Is supposed to encode more high-order interactions.

 In order to verify this hypothesis, we construct two datasets.
» One dataset of classifying entire bird heads and partial bird heads
forces the DNN to hard memorize the entire large-scale

concepts for inference.
» The other dataset for the estimation of whether or not an image

contains bird heads.

Entire PRids- f Partial ‘
bird heads, .=t ¥ & bird heads
[ - el * ‘




> Understanding large-scale visual concepts

« Metrics for verification: Multi-order interaction strength F(™),

 \rification:
The classification of entire and partial bird heads encoded more

high-order interactions.

Conclusion: The DNN memorized large-scale concepts for
— Inference usually encode more high-order interactions

N (m) P
ResNetA8 |'\F ResNet-34
2 ; Classifying entire and
- partial bird heads
: Classifying whether to

contain bird heads

M \ /ol i
0.1n 0.5n N8 efder = 0.1n 0.5n  O8n—drder &
: : Yyl
Cheng et al, "A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.




>» What is the relationship between interactions and
visual concepts?

 Understanding the encoding of textures

 Understanding the difference between textures & shapes
 Understanding large-scale visual concepts

e Understanding outliers




> Understanding outliers

« Hypothesis:
The classification of outliers mainly depends
on high-order interactions.

 |n order to verify this hypothesis, we construct synthetic outliers.
v" We add negligible noises to 50/100/200/300 randomly

chosen training samples from Tiny ImageNet dataset, and
assigned these noisy images with random labels to generate

outliers.



> Understanding outliers

e Two metrics to verify the above hypothesis:
> 1™ - measures the average m-order interaction.

avg-
Iéf;) = EzeqlEi jen[I™ (i, j|z)]].

A large I, value indicates that the m-order interaction made a
significant contribution to the classification.

> P measures the ratio of m-order interactions having positive
effects among all m-order interactions.

Ereak; jen[max(I(™ (i, j|z), 0)]
EiealEi; [[1™ (i, j|2)]]]

pm) —

A large P(™ value indicates more m-order interactions contribute to
the classification positively, 1.e. being more useful.




o Understandingouties
* In order to verify the hypothesis:
v We compare the difference of metrics 15,',,';; and P™ between

outliers and normal samples, i.e.

AI(m) . I(m,outlier) . I(m,normal)
avg  ‘avg avg ’
A P(m)= P(m,outlier) - P(m,normal)

v If AIS) > 0 and AP™ > 0 for high order m, then the

classification of outliers mainly depends on high-order
Interactions.

N
A



> Understanding outliers

* \rification:

For DNNs trained using datasets contained 50/100/200/300 outliers,
AIGr)> 0 and AP™> 0, when the order m > 0.8n.

Conclusion: Compared to normal samples, the classification

—

Al

wvelxi0 )

(a) Trained on
Tiny ImageNet
dataset

AP

N 50 outls
outhers

100 outliers
B 200 outliers 0.

B 300 outliers 0.1

(m)

(m)

of outliers mainly depends on high-order interactions.
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Cheng et al, “A Game-Theoretic Taxonomy of Visual Concepts in DNNs” in arXiv:2106.10938, 2021.
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Can we learn meaningful
features based on
Interactions?

Wen Shen
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How to define interactions in game theory?

How to determine baseline values for the Shapley value?

What is the relationship between interactions and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?

What Is the relationship
between interactions
and the generalization?

What is the relationship between interactions and adversarial transferability?
What is the relationship between interactions and adversarial robustness?




The Link between Interactions and the Network’s
o Generalization Ability

« Theoretically prove that Dropout can decrease the strength of
Interactions modeled by DNNs

 There Is a negative correlation between the strength of
Interactions and the generalization ability of the network

« The generalization ability of the network can be enhanced by
directly controlling the strength of interactions
e

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View" in ICLR, 2021



> Overfitting = Strong Interactions

Dropout can decrease the strength of interactions modeled by DNNs

x
X
-
[=]

»x 1077
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—

1]

- .
wio-dropout —w/-dropout
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*x 10-L

10 @,_x f“:_ 1072 5_ 7
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= = S e s} droPoqt_ = wi-dropout =S S—
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The relationship between

- 25 : —_—
0 50 100 150 Epoch O 50 100 150 Epoch O 50 100 150 Epoch

— 5§ = (0.1n
—_— 5 =(0.3n
s =0.5n
s=0.7n
s =09

interactions and the generalization Dataset | Model | Ordinary | Over-fitted
bility MNIST  |RN-44 [2.17x10 °|3.64x10

aDility: Tiny-ImageNet | RN-34 | 2.57x 10~3 | 2.89 x 10—3
over-fitting ———> more interactions CelebA RN-34]6.46x10""|1.17x10"*

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View" in ICLR, 2021




Suppressing Interactions = Boosting the
> generalization power

Enhance the generalization ability of the network by directly suppressing
the interactions modeled by the network:

boss = LoSS | cincation T AL0SS e o

LosSinteraction = IEi,jEN,iij

= Ejjenizj [

Based on the interactions,
» EXxplicitly control the DNN

 Solve the issue that dropout is not compatible with batch

normalization

Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View" in ICLR, 2021

1(, )]

Z - PShapley(SlN\{i»j})[Af(S' l'])]”
SCN\{ij}

we improve the utility of dropout

between over-fitting and under-fitting. -
Two

—advantages




Suppressing Interactions = Boosting the
> generalization power
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Zhang et al. “Interpreting and Boosting Dropout from a Game-Theoretic View" in ICLR, 2021
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How to define interactions in game theory?

How to determine baseline values for the Shapley value?

What is the relationship between interactions and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?
What is the relationship between interactions and the generalization?

What Is the relationship
between interactions
and adversarial transferability?

What Is the relationship between interactions and adversarial robustness? 1
3




The negative correlation between the interaction and
the adversarial transferability

>

» Theoretical foundations: Multi-step attacks vs. Single-step attacks
Interaction: Multi-step attacks > Single-step attacks
« Overfitting: Multi-step attacks > Single-step attacksl!!

« Empirical verification:
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[1] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille. Improving transferability of adversarial examples with
input diversity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2730-2739, 2019.

‘ ..
Wang et al. A Unified Approach to Interpreting and Boosting Adversarial Transferability. In arXiv:2010.04055, 2020



£+ %744 % Common essence: the reduction of
Interactions Is the common mechanism of previous
transferability-boosting methods

 Existing transferability-boosting methods can be approximately explained as
the reduction of interactions.
« Theoretically prove the attack based on momentum (M| Attack)!?]
 Theoretically prove the attack based on smooth of gradients (VR Attack)L!
« Theoretically prove the attack based on skip connections (SGM Attack)!
« Empirically verify the attack based on Translation-invariant (T Attack)!®]
« Empirically verify the attack based on Input diversity (DI Attack).!

P ition 1 iti P ition
The adversarial perturbation Proposition 2 The adversarial The adversarial perturbation

generated by the multi-step attack is given perturbation generated by the multi- generated by the multi-step attack is given as
as 5multl Z V l(h(x o Smultl) Y) Where tep attaCk IS glven as 6"11/-”1 o 8rrrrllulti = O_’Z?;_Ol Vxl(h(x 4 6rtnulti)' y)- The

881 denotes the perturbation after the t-th @ D55 Vel (h(x + 871),¥)- The adversarial perturbation generated by the
step of updating, and m is referred to as the ddversarlal perturbation generated by multi-step attack incorporating the
total number of steps. The adversarial the VR Attack is computed as 67 = momentum is computed as 87 = a ¥t gl ..
perturbation generated by the single-step a Yot B l(h(x + 85,.),y), where [(h(x + Perturbation units of §; tend to exhibit
attack is given as 61 = amV,I(h(x), ). smaller interactions than O tir 1-€.
Then, the expectation of interactions ExEqpllap(67m)] < ExEqplap (Grmuie)]-

between perturbation units in 67,
ab[lab(dmultl)] IS |arger than IEa,b [Iab(dsingle)]r
| €. IEab[ ab (Smuln)] = IE:a,b[ ab (Ssingle)]

[2] Yinpeng Dong, Fangzhou Liao, and et al. Boosting adversarial attacks with momentum. In CVPR, 2018

3] Lei Wu, Zhanxing Zhu, and Cheng Tai. Understanding and enhancing the transferability of adversarial examples. arXiv preprint arXiv:1802.09707, 2018
4] Dongx ian Wu ,Yisen Wang and et al. Skip connections matter: On the transferability of adversarial examples generated with resnets. In ICLR, 2020.

51 Yir 1peng Dong Tianyu Pang;, and et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. In CVPR, 2019.
6

[
[
[
[6] Cihang Xie, Zhishuai Zhang; and et al. Improving transferability of adversarial examples with input diversity. In CVPR; 2019.

Wang et al. A Unified Approach to Interpreting and Boosting Adversarial Transferability. In arXiv:2010.04055, 2020



Application: Penalizing interactions to improve
. adversarial transferability

« With the additional interaction-reduction loss, the PGD attack improves more
than 10% adversarial transferability.

« Combining existing methods with the interaction-reduction loss, the
adversarial transferability is improved from 54.6%-98.8% to 70.2%-99.1%

Source | Method | VGG-16 RNI52 DN-201  SE-154  IncV3 IncV4  IncResV2
MI 80.1+0.5 73.0£2.3 77.7x0.5 48.9+0.8 46.2x1.2 39.9x0.5 34.8£2.5
VR 88.81+0.2 86.4%=1.6 879+24 62.1£1.5 584+£3.0 56.3£2.3 497109
RN-34 SGM | 91.8+0.6 89.0+0.9 90.0£0.4 68.0tl4 63.9+03 58.2+1.1 54.6+1.2
SCGM+IR | 94.7£0.6 91.7£0.6 934108 72.7x04 68909 64.1£1.3 61.3=1.0
HybridIR | 96.5+£0.1 94.9+0.3 95.6+0.6 79.7+1.0 77.1+0.8 73.8+0.1 70.2+0.5

MI 70.3£0.6 - T4.8+1.4 517108 47.120.9 40.5+1.60 36.8+£27

VR 83.9+3.4 — 91.1+0.9 70.0£3.7 63.1=0.9 58.8+0.1 56.2+1.3

RN-152 SGM | 88.210.5 - 90.2+0.3 72714 632207 59.1x1.5 58.1£1.2
SGM+IR | 92.0£1.0 - 92.51£0.4 79.3£0.1 69.0=0.8 06.2+1.0 63.6+0.9
HybridIR | 95.3+0.4 - 96.9+0.2 84.7+0.7 80.0+£1.2 77.5+£0.8 75.6+0.6

MI 83.0£4.9 720207 91.5+0.2 58.4%£2.6 54.6x1.6 49.2+£2.4 439=£l1.5
VR 91.5x0.5 88.7x0.5 98.8x0.2 75.1x1.3 743x1.7 75.6x3.0 69.8%1.3
DN-121 | SGM | 88.7+0.9 88.1£1.0 98.0+0.4 78.0+£0.9 64725 654+2.3 59.7+1.7
SGM+IR | 91.7+0.2 90.4104 94330.1 87.0+04 78.8x1.3 795102 T758+27
HybridIR | 96.9+0.4 96.8+0.4 99.1+0.4 90.9+0.5 88.4+0.8 87.8+0.8 87.1+0.4

MI T7.310.8 T4.8+14 64.6+1.0 56.5+2.5 51.1+2.1 47.8£1.9

VR 87.3£l1.1 90.4£1.2 78.0£1.5 758x2.1 75.8x1.3 TL3£l.2
DN-201| SGM | 87.3x0.3 924x1.0 82.910.2 723x0.3 T1.3x0.6 68.8x£0.5
SGM+IR | 89.5+0.9 91.8+0.7 87.3=1.2 B2.5x0.8 80303 B81.5+0.5
HybridIR | 94.4+0.1 96.9+£0.5 91.7£0.2 89.6=0.6 88.3+0.3 87.3+0.7

Wang et al. A Unified Approach to Interpreting and Boosting Adversarial Transferability. In arXiv:2010.04055, 2020



How to define interactions in game theory?

How to determine baseline values for the Shapley value?

What is the relationship between interactions and visual concepts?

What is the relationship between interactions and the aesthetic appreciation?
What is the relationship between interactions and the generalization?

What is the relationship between interactions and adversarial transferability?

What Is the relationship
between Interactions
and adversarial robustness?
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& Previous explanations of adversarial robustness

[ Previous explanations lack an essential and unified explanation.

- » Explaining adversarial examples

 Linearity of feature representations
What is the essence « Non-robust but discriminative features
of adversarial attacks < « Explaining adversarial training
and defense? « Learning general shapes of objects
« Enumeration of all possible adversarial
\ examples

How to explain

adversarial robustness . :
{ « Explaining adversarial robustness

f h ' f : '
rom the perspective o » Proving the theoretical bound

feature representations?

[1] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples and black-box attacks. ICLR, 2016.
[2] Lei Wu, Zhanxing Zhu, and Cheng Tai. Understanding and enhancing the transferability of adversarial examples. arXiv preprint arXiv:1802.09707, 201€. U
[3] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial
attacks transfer? explaining transferability of evasion and poisoning attacks. In 28th USENIX Security Symposium USENIX Security, pp. 321-338, 2019.



& Contributions of this paper

« \Me discover that adversarial attacks mainly affect high-
order Interactions between input variables.

e The adversarial training boosts the robustness of DNNs
by learning more discriminative low-order interactions.

« \We propose a unified explanation for several adversarial
defense methods.

< -
Wang et al. A Unified Approach to Interpreting and Boosting Adversarial Transferability. in ICLR 2021



& Contributions of this paper

« \We discover that adversarial attacks mainly affect high-
order Interactions between input variables.

« The adversarial training boosts the robustness of DNNSs
by learning more discriminative low-order interactions.

« \We propose a unified explanation for several adversarial
defense methods.
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Adversarial attacks mainly affect high-order
&* interactions

Given an normal sample x, let ¥ = x + ¢ denotes its adversarial
example.

Decompose the total adversarial utility of perturbations into
attacking utilities on different interactions of different orders:

Av(N|x) = u(N|x) — p(N|Z) = z AGO ([N, x) + z Z A,
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Adversarial attacks mainly affect high-order
' Interactions
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Figure: The multi-order interaction in normal samples and that in adversarial
examples of standard DNNs and adversarially trained DNNSs.

We discover that adversarial attacks mainly affect high-
order Interactions between Input variables.
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* The adversarial training boosts the robustness of DNNSs
by learning more discriminative low-order interactions.
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Adversarial training boosts the robustness of high-
&* order interactions

Attacking utility of m-order interactions: AJ;’ o :ll (; SAI i
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In adversarially learned DNNSs, attacking utilities
of high-order interactions significantly decreased.
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Adversarial training learns more reliable low-order

Interactions to boost the robustness of high-order
. Interactions

Disentanglement: whether I ()]

: : I = E.cE; jen / T
m-order interactions i#5 2 SCN\{ij}.|8|=m |1AV(E ], S|z)]
represent the information | 2oscmn\(i1.51=m AV(E J, S|2)]

. = EzeqlEijen .
of a specific category. i#i 2 SCN\{ij}|S|=m AV 7, S[T)]

In adversarially learned DNNSs, low-order interactions exhibited higher
disentanglement -> more category-specific -> strengthen the
robustness of high-order interactions.
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Figure: The interaction disentanglement.
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« \\e discover that adversarial attacks mainly affect high-
order Interactions between input variables.

« The adversarial training boosts the robustness of DNNSs
by learning more discriminative low-order interactions.
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+ %,/ % The unified explanation for previous

>» adversarial defenses

 Attribution-based method for detecting M
adversarial examples: ML-LOO [1]

* Rank-based method for detecting

adversarial examples [2] .

e Cutout method [3]

« High recoverability of adversarial
examples in adversarially trained DNNSs

Detecting the highest-order
Interaction (the most sensitive
component).

Utilizing discriminative low-order
Interactions and removing
sensitive high-order
Interactions boost the robustness.
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